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We compute the properties of singlet and triplet bipolarons on two-dimensional lattices using the
continuous-time quantum Monte Carlo algorithm. Properties of the bipolaron including the total energy, in-
verse mass, bipolaron radius, and number of phonons associated with the bipolaron demonstrate the qualitative
difference between models of electron-phonon interaction with long-range interaction �screened Fröhlich� and
those with purely local �Holstein� interaction. A major result of our survey of the parameter space is the
existence of extra-light hybrid singlet bipolarons consisting of an on-site and an off-site component on both
square and triangular lattices. We also compute triplet properties of the bipolarons and the pair dispersion. For
pair momenta on the edge of the Brillouin zone of the triangular lattice, we find that triplet states are more
stable than singlets.
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I. INTRODUCTION

A fascinating scenario for phonon-mediated superconduc-
tivity involves the pairing of polarons into bipolarons at
strong electron-phonon coupling.1 If the resulting pairs are
sufficiently small that the bipolarons are well separated rela-
tive to their size, then the pairs act like bosons and a Bose-
Einstein condensate �BEC� of bipolarons could form. The
transition temperature of such a condensate is limited by
properties such as the mass and size of the pairs. Therefore,
to examine the possibility of such a scenario at observable
temperatures, it is essential to have good data regarding bi-
polaron properties. It is the purpose of this paper to use the
numerically exact continuous-time quantum Monte Carlo
�CTQMC� algorithm to make a comprehensive survey of the
properties of Hubbard-Fröhlich bipolarons on both triangular
and square lattices.

There are a number of exact numerical methods for study-
ing bipolaron formation in one-dimensional �1D� systems
with electron-phonon interactions such as exact-
diagonalization �ED�,2,3 advanced variational techniques,4

density-matrix renormalization-group �DMRG�,5 and various
QMC approaches.6–8 In two-dimensional �2D� systems,
many of those techniques are not applicable. Exact diagonal-
ization cannot cope with large numbers of lattice sites,
DMRG schemes are not easy to develop in 2D, and both ED
and DMRG can suffer from a truncation of the phonon Hil-
bert space, rendering those methods inefficient at strong
electron-phonon coupling. Also, the Hilbert space of ad-
vanced variational techniques grows too fast for application
to 2D bipolarons �although we note that the technique can be
applied to polarons in three dimensions without problems9�.
On the other hand, QMC techniques �and especially
continuous-time QMC� can cope with large lattice sizes and
treat the phonon degrees of freedom exactly, making them
well suited for computations of bipolarons on two- and po-
tentially even three-dimensional lattices.

There is an interesting possibility relating to bipolarons in
2D. If a lattice is made up from triangular plaquettes, and if

there is a strong Coulomb repulsion keeping bipolarons from
pairing on-site, superlight small bipolarons can form.10–13

Our aim here is to comprehensively compute the properties
of bipolarons with long-range interaction on both square and
triangular lattices to determine if there are any other prom-
ising ways that bipolarons can pair. The Hubbard-Holstein
bipolaron on the square lattice was studied by Macridin et
al.14 using the related diagrammatic quantum Monte Carlo
technique. Bipolaron formation in the Hubbard-Holstein
model has also been studied approximately in 1D �Ref. 15�
and in 2D on the square lattice16 using variational methods
leading to qualitatively similar results. Our current study
goes beyond this previous work by computing the properties
of bipolarons formed from long-range electron-phonon inter-
actions. We also compute properties of bipolarons on trian-
gular lattices, which have not been comprehensively studied
even for the Holstein interaction. Our CTQMC algorithm is
particularly efficient for this task since phonon degrees of
freedom can be treated exactly to generate an effective re-
tarded interaction between electrons.

In this paper, we study the screened Hubbard-Fröhlich
model, which has the Hamiltonian,

H = − t �
�nn���

cn��
† cn� + U�

n
cn↑

† cn↑cn↓
† cn↓ + �

m

P̂m
2

2M

+ �
m

�m
2 M�2

2
− �

nm�

fm�n�cn�
† cn��m. �1�

Here, cn
† creates an electron on site n, t is the intersite hop-

ping integral, U is the Hubbard repulsion, M is the ion mass,
� is the ion oscillation frequency, � is the ion displacement,

and P̂ is the ion momentum. The electron-ion force function
is f and has the form fm�n�=���m−n�2+1�−3/2exp�−�m
−n� /Rsc�. The screening radius Rsc controls the length of the
interaction and � is the strength of the interaction. m repre-
sents the position of the ion and n is the position of the
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electron. The electron-ion interaction leads to an effective
retarded electron-electron interaction characterized by the
function,

��r�r���,r����� = �
m

fm�r����fm+�r�r����� , �2�

where �r is the offset between end configurations of the
paths �see Sec. II�. By changing Rsc it is possible to investi-
gate the Hubbard-Holstein model �Rsc→0� and the Hubbard-
Fröhlich model �Rsc→��. We also consider a model similar
to the nearest-neighbor model of Bonča and Trugman,17

where effective electron-electron interactions are truncated at
near-neighbor sites ���a�=��0� /2 and all other �=0, where
a are vectors to the near-neighbor sites�. This simplified
model maps directly onto a U-V model in the large phonon
frequency limit and could be particularly useful for under-
standing limiting behavior.18

This paper is structured as follows. In Sec. II, we briefly
review the differences between the CTQMC algorithm in 1D
and 2D. In Secs. III and IV we make a comprehensive survey
of the parameter space of singlet bipolarons in 2D. Triplet
properties are discussed in Sec. V. One of the additional ad-
vantages of our algorithm is that bipolaron dispersions can
be computed efficiently, especially in the large 	 regime, and
these are shown in Sec. VI. Finally we summarize in Sec.
VII.

II. METHOD

We use a continuous-time quantum Monte Carlo algo-
rithm based on path integrals. We have previously discussed
our algorithm in detail with regard to computations in 1D,6

so we do not repeat those details here. To aid the reader of
this section, we briefly recap some of our terminology: we
have two paths, which are configurations forming the inte-
grand of a path integral, where each path represents a single
particle and exists on the imaginary time interval �� �0,
�.
Our Monte Carlo procedure performs the path integral by
probing different path configurations which each have a
weight exp�A�, where A is the action of the configuration
given by

A�r1,r2� =
z	�̄

2�0�0,0�	0
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0
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V�r1���,r2����d� �3�

�note the sign convention�. The symbols 
̄= t /T, �̄=� / t, and
V�r1 ,r2� is the instantaneous electrostatic interaction between
electrons and for the Hubbard interaction has the form

V�r1 ,r2�=U�r1,r2
, z is the coordination number and 	

=Ep /zt, where Ep=�0�0,0� /2M�2 is the polaron shift. Paths
are formed from straight segments, punctuated with kinks
that correspond to hopping from one site to another. A sche-
matic showing example paths can be found in several of our
papers. Path configurations are updated via a Metropolis pro-
cedure to perform the path integral. In order to compute the
effective mass and dispersion, the boundary conditions in
time are “twisted” so that there is an offset �r between the
ends of the paths at times �=0 and �=
.6 This twisting of the
boundary conditions leads to the second term in the action.

There are a few small subtleties relating to using the al-
gorithm in 2D, especially on a triangular lattice, which are
discussed below. Our algorithm has been thoroughly checked
against results from the U-V model, which represents the
large phonon frequency limit of the near-neighbor interac-
tion. We also checked against exactly known results for bi-
polarons in 1D �Ref. 19� and against diagrammatic quantum
Monte Carlo.20 Details of code checks can be found in Ap-
pendices A and B.

A. Triple kink insertions on triangular lattices

The algorithm is subtly different on triangular lattices or
more generally on any lattice where an electron can return to
its original position in three hops �such as lattices with
nearest- and next-nearest-neighbor hoppings�. We illustrate
this by considering an example configuration that is permit-
ted on such lattices: let one of the paths have no kinks while
the other path has three kinks—one in each of the nearest-
neighbor directions—so that the start and end of each path
lies on the same lattice site. Such a configuration is clearly
permitted since the periodic boundary conditions in imagi-
nary time are satisfied. However, if only binary kink inser-
tions are included in the algorithm then it is not possible to
update between configurations with odd and even numbers
of kinks. Thus, to ensure ergodicity, an update with a three-
kink insertion is proposed.

Our scheme for three-kink insertion is similar to the one
that we use for binary updates. To avoid complications, we
do not weight the positions of the kinks in imaginary time.
Ternary kink insertions do not need to be especially efficient;
if path configurations can be updated from even to odd num-
bers of kinks �and vice versa� with reasonable regularity,
binary insertions can be used to sample the remaining con-
figurations efficiently. Our scheme is as follows: �1� we se-
lect a kink type from the six possible kinks and assign the
label l1. �2� We choose kinks at 120° and 240° rotations from
l1 and assign them the labels l2 and l3. �3� We choose inser-
tion or removal of kinks with equal probability 1/2. �4� If
inserting, we choose imaginary times �1, �2, and �3 for the
new kinks with equal probability 1 /
 from the interval
�1,
�. �5� If removal is selected and there is not at least one
of each type of kink, then abort. Otherwise select kinks of
type l1, l2, and l3 for removal with equal probability 1 /Nl1

,
1 /Nl2

, and 1 /Nl3
, respectively.

If configuration �D� has three more kinks than configura-
tion �C�, then insertion takes place with probability

P�C → D� = min
 �t
�3

Nl1
�D�Nl2

�D�Nl3
�D�

eA�C�−A�D�,1� �4�

and for removal,
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P�D → C� = min
Nl1
�D�Nl2

�D�Nl3
�D�

�t
�3 eA�D�−A�C�,1� .

�5�

Note that the number Nl1
�D� represents the number of kinks

of type l1 in configuration D. Therefore when kinks are in-
serted, this is the number of kinks in the final configuration.
When kinks are removed, Nl1

�D� is the number of kinks in
the initial configuration.

B. Path exchange in 2D

There are some differences between exchange updates in
1D and 2D, and some additional considerations on the trian-
gular lattice. In 1D, exchange can be carried out by inserting
and removing kinks and antikinks. The form of the exchange
update in 1D is

P�C → D� = min�1,Ql,−l
�A�Q−l,l

�B� exp�A�C� − A�D�� , �6�

where

Ql,−l
�A� = �t
�2nA−�

min�NA−l,�� + 1

min�NAl + nA,�� + 1

NA−l
P�−nA

NAl+nA
PnA

, �7�

here � is the displacement between the �=
 ends of path A
and path B. nPk=n ! / �n−k�! is the number of permutations.
There are Np=min�NA−l ,��+1 possible updates that can be
made by inserting nA kinks into path A and removing mA
antikinks, where nA+mA=�. mA is chosen with equal weight-
ing 1 /Np. NAl is the number of kinks of type l on path A. The
expression for path B is similar but the kink and antikink
assignments are reversed to get displacement −�.

In 2D, two sets of kinks and antikinks in different direc-
tions are required to exchange the ends of the paths, so the
exchange update has the form

P�C → D� = min
1,exp�A�C� − A�D���
i=1

d

Qli,−li
�A� Q−li,li

�B� � ,

�8�

where there is a different � for each kink type to be inserted
�and thus a different Np and m which should be chosen in-
dependently for each kink type and path� as determined from
the number of kinks that would be required to hop from the
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FIG. 1. Total energy of bipo-
larons on the square lattice for

various U, 	, Rsc, �̄=1 and 
̄
=
 / t=14. There is a clear qualita-
tive difference between bipolarons
with long-range interactions and
those formed from the purely lo-
cal Holstein interaction. Unless
otherwise indicated, error bars
represent three standard devia-
tions. Where error bars are not
visible, they are smaller than the
points.
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end of one path to the end of the other. d is the number of
lattice dimensions.

For the triangular lattice, the choice of the two kink di-
rections is not unique since the kinks are not orthogonal.
There are six nearest-neighbor vectors representing kinks. To
carry out the update, kinks representing two different direc-
tions are chosen with equal weight from all available possi-
bilities �that is, the two chosen kinks may not be antikinks of
each other�. Since an equal weight scheme is used, the fac-
tors relating to the probability of this choice cancel on both
sides of the balance equations. It is important to choose kinks
from all possible directions to improve the efficiency of the
algorithm.

C. Global path shifts

As in the 1D case, a useful update displaces a single path
when the configurations are not exchanged. In both cases,
one of the paths is chosen with equal probability, a kink
direction is chosen with equal probability and then the path
is shifted through r lattice sites, where r is an integer chosen
randomly between 0 and Rmax−1. Typically Rmax=50 for lat-
tice size 100. Failure to include global path shifts leads to an
inefficient algorithm with large correlation between measure-
ments, which is especially bad when the bipolaron is only

just bound. Global shifts are essential when the bipolaron
radius is to be measured.

D. Signs and triplet states

We have previously discussed triplet formation in 1D.6

When triplets properties are calculated, there is a potential
sign problem: for paths in an exchanged state, triplet states
pick up a sign s=−1, and when both paths begin and end on
the same site, a sign s=0 is assigned. In 1D, it is possible to
compute triplet properties with configurations that always
have sign 1 by selecting U=� because triplet properties are
independent of Hubbard U �there is a node in the wave func-
tion for zero particle separation, so the U has no effect on the
triplet state�. In 2D, even the U=� state has an average sign
which is not unity because paths can twist around each other
to give an exchanged state even when U=�. In our calcula-
tions of triplet properties we therefore take account of the
triplet sign in our averages as discussed in Ref. 6. So long as
U is taken to be sufficiently large, the sign problem is not
pronounced enough to stop us from computing accurate trip-
let properties on 2D lattices, although it is necessary to take
significantly more Monte Carlo steps to get accurate data.

E. Error estimation

To ensure that errors are estimated with good accuracy,
blocking in association with bootstrap resampling is used to
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FIG. 2. Inverse mass of bipo-
larons on the square lattice. Pa-
rameters are the same as in Fig. 1.
Again, qualitative differences be-
tween the bipolarons formed via
the purely site local Holstein inter-
action and the long-range interac-
tions can be seen.
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avoid underestimating the error because of intertime-step
correlations. Where ratios of measurements are considered,
the covariance between the two measurements is also taken
into account.

III. SINGLETS ON THE SQUARE LATTICE

The survey of the bipolaron parameter space begins by
considering singlet properties of bipolarons on the square
lattice. We will examine the effects of the electron-phonon
coupling, Hubbard repulsion, and interaction range on the
bipolarons. In the following, we take �̄=� / t=1, which cor-
responds to � /W=1 /4 which is well inside the adiabatic
regime. W is the energy of a single noninteracting electron.
W=4t for the square lattice and W=6t for the triangular lat-
tice. We restrict paths to lie within 100 lattice spacings of
each other, with the large lattice size used to ensure that the
effects of the lattice restriction are minimal �this should be
true where the bipolaron radius is much smaller than the
lattice size�. Most properties are not strongly affected by
finite-size effects. We note that the inverse radius is the most
sensitive measurement, and the total energy the least sensi-
tive. The most severe finite-size effect is that premature bind-
ing can occur if the paths are too closely restricted.

Figure 1 shows the total energy of the two polarons/
bipolaron pair for a range of electron-phonon coupling
strengths, interaction screening radius, and Hubbard U. As is
the case in 1D,6 a qualitative difference can be seen between
bipolarons formed with Holstein and screened Fröhlich inter-
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FIG. 3. Comparison of the inverse mass for bipolarons on the
square lattice. 	=1.6 and various interaction ranges are considered.
Other parameters are as in Fig. 1. At intermediate U, the energies of
the on-site �S0� and intersite �S1� bipolarons are degenerate, so a
light bipolaron can be formed without the need for triangular
plaquettes.
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FIG. 4. Number of phonons
associated with bipolarons on the
square lattice. Parameters are
identical to Fig. 1. Again, the
properties of the Holstein bipo-
laron are qualitatively different to
those of the Fröhlich bipolaron.
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actions. At large U, the energy curves for the Hubbard-
Holstein bipolaron are flat, indicating that the bipolaron has
unbound into two polarons. This is true for all the 	 shown,
indicating that there is no bound singlet bipolaron in the U
→� Hubbard-Holstein model. The significance for triplet
states will be discussed later in the paper.

In contrast to the flat energy curves characterizing the
large U, large 	 Holstein model, the energy of the Hubbard-
Fröhlich bipolaron changes on varying U, indicating that
there are bound singlet states even for very large U �we will
revisit this point later in the paper�. For small 	 and Rsc
�0, the energy curves are flat at large U. The model with
only nearest-neighbor interaction ���a�=0.5� has similar
properties to the Rsc=2 and Rsc=3 models. ��a�=0.438 to
an accuracy of three significant figures for the model with
Rsc=2 and ��a�=0.509 to an accuracy of three significant
figures for the model with Rsc=3, indicating that bipolaron
properties depend most strongly on the nearest-neighbor part
of the Fröhlich interaction, rather than the tails.

It is useful to quickly describe the limiting behaviors of
the bipolarons. First, it is appropriate to introduce some no-
tation. We use S0 to define a strongly bound on-site singlet
pair where the two electrons are separated by no lattice spac-
ings and use S1 to denote a strongly bound intersite pair
where the electrons are separated by one lattice space.14 As
discussed for the 1D model,6 if bipolarons are strongly
bound the renormalized intersite hopping is small, and an

atomic Hamiltonian can be determined using the Lang-
Firsov transformation,

H̃at = − �
nn�

W	�0�n,n��
�0�0,0�

n̂nn̂n� + ��
m
�dm

† dm +
1

2
� . �9�

Since the electron number operator, n̂ is unchanged under the
Lang-Firsov transformation, the effects of the Hubbard U
can quickly be reintroduced. Thus, for a strongly bound on-
site �S0� bipolaron,

E = U − 4W	 . �10�

W is the noninteracting kinetic energy of a single particle
�half bandwidth�. The limiting behavior of the S0 bipolaron
is shown on the plots as dashed lines. As in the 1D case, the
S0 Hubbard-Holstein bipolaron rapidly becomes strongly
bound on decreasing U. For the longer range interactions, it
takes much more attraction to strongly bind the S0 bipolaron.
We can also compute the energy of the strongly bound S1
bipolaron which forms at large 	 and UW	,

E = − 2W	�1 + ��a�/�0� . �11�

The energy of the strongly bound S1 state is plotted in Fig. 1
as the arrows at U /W=3.5 �note that only five arrows corre-
sponding to the largest 	 are shown�. The energy of the
strongly bound S1 bipolaron is higher than the simulated
energy but the values converge as 	 increases. From the

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

R
−

1 bp

U/W

Square, Fröhlich

λ=0.2
λ=0.4
λ=0.6
λ=0.8
λ=1.0
λ=1.2
λ=1.4
λ=1.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5

R
−

1 bp

U/W

Square, Fröhlich, Rsc=3

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

R
−

1 bp

U/W

Square, Fröhlich, Rsc=2

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5

R
−

1 bp

U/W

Square, Fröhlich, Rsc=1

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5

R
−

1 bp

U/W

Square, Holstein

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

R
−

1 bp

U/W

Square, Near−neighbor
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associated with bipolarons on the
square lattice. Parameters as in
Fig. 1.
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difference in energies between the S1 limit and the simulated
energy, it appears that the bipolarons formed from heavily
screened interactions have a stronger S1 character.

The inverse mass of the bipolarons is shown in Fig. 2.
Again, significant differences between Hubbard-Holstein and
Hubbard-Fröhlich bipolarons can immediately be seen. In
the Hubbard-Holstein model, the mass changes very rapidly
with U when the bipolaron binds, with the mass changing
through several orders of magnitude over a very small range
of U values. This rapid change is not seen for the Fröhlich
bipolaron, which maintains a similar mass over a wide range
of U. For the larger 	 values and large U, the system of two
particles appears to be heavier in the Fröhlich case. This is
because the Holstein bipolaron is not bound for those values,
whereas the Fröhlich interaction leads to an intersite �S1�
bipolaron.

In comparison to the U dependence of the mass of the 1D
Holstein bipolaron, which can be found in Ref. 6, the change
in mass with U is extremely rapid on the square lattice. In
contrast, the mass relating to long-range interactions is quali-
tatively unchanged, with the formation of a relatively light
bipolaron �even in comparison with a free electron� over a
very wide range of the parameter space. The qualitative dif-
ference between the properties of Holstein and Fröhlich bi-
polarons emphasizes that while the Holstein model may be a

reasonable approximation for considering polarons in or-
ganic molecular compounds, the simple Holstein approxima-
tion is inappropriate for many crystalline systems where
complete screening of the electron-phonon interaction is not
possible. Even if the screening length is as small as a single
lattice spacing, bipolarons have significantly modified prop-
erties compared with those formed in the Holstein model.

In 1D, a crablike bipolaron can form in models with long-
range interaction when the energies of on-site and off-site
configurations are degenerate �S1 like configurations can be
changed to S0 with a single hop, without any energy barrier
to make the process second order in t�. This leads to a no-
ticeable decrease in mass at intermediate U. It is of interest
to determine if these lighter bipolarons can also form on the
square lattice. In Fig. 3, the masses of bipolarons formed
when 	=1.6 are examined as Rsc is changed. A peak in the
inverse mass �decrease in the mass� is clearly visible at in-
termediate U and is especially pronounced when Rsc=2.
Comparing Eqs. �10� and �11�, it can be seen that for large
phonon frequencies, the peak would be expected at U /W
=2	�1−��a� /��0��, which corresponds to U /W=1.798 for
Rsc=2 �to 4 significant figures� in good agreement. The pres-
ence of this peak shows that light bipolarons can exist on
square lattices without the need for triangular plaquettes.
Naturally, such a state depends on a very subtle balance of
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parameters and could not be realized in all crystalline
systems.

As in the case of the 1D bipolaron, analytical determina-
tion of the effective mass, even for limiting values of the
parameters, is difficult �and may not be possible� when there
are long-range tails in the interaction. While we have not
computed limiting behaviors of the mass for the model with
only near-neighbor interaction, we expect that a similar ap-
proach to that applied to the 1D bipolaron by Bonča and
Trugman21 could yield results.

We also show the number of phonons associated with the
bipolaron cloud �Fig. 4�. As before, the properties of the
Hubbard-Holstein bipolaron are qualitatively different to the
bipolarons formed from long-range electron-phonon interac-
tion. The number of phonons associated with the Holstein
bipolaron shows an abrupt increase as the bipolaron binds on
decreasing U, whereas there is a smoother crossover from S1
to S0 behavior associated with the screened Fröhlich inter-
action.

The total number of phonons associated with the strongly
bound on-site bipolaron �following the argument in Ref. 12�
is

Nph =
4W	

�
. �12�

This number is independent of U, so the number of phonons
reaches a limiting value on decreasing U as seen in Fig. 4
�the strongly bound S0 limit is represented by arrows on the
left of the graph�. The Holstein bipolaron with large 	
quickly reaches the S0 limit at low U. Bipolarons formed
with long-range interactions approach the S0 limit less rap-
idly since the longer range tails lead to a shallower effective
potential.

The number of phonons associated with the S1 bipolaron
can also be found,

Nph =
2W	

�
�1 +

��a�
�0

� . �13�

This is represented as arrows on the large U side of the plots.
The agreement improves on increasing 	. Again, it is clear
that the most heavily screened interactions have the most
clearly defined S1 character.
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FIG. 7. Number of phonons
associated with bipolarons on the
triangular lattice. Parameters are
as in Fig. 6.
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We complete this section by examining the inverse bipo-
laron size associated with the square lattice �Fig. 5�. Again,
qualitative differences exist between the Holstein bipolaron
and the Fröhlich bipolarons, with S1 bipolarons forming in
the screened Fröhlich model at large U and 	 indicated by a
radius of around a lattice spacing. Comparison with Fig. 2
shows that bipolarons on the square lattice with long-range
interaction may be both small and light at intermediate and
large 	 and intermediate U, where polarons are bound into
the hybrid S0-S1 bipolaron.

IV. SINGLETS ON THE TRIANGULAR LATTICE

In this section, attention is turned to the properties of
bipolarons on the triangular lattice, which have already been
shown to have unusual properties.12 To ensure that results for
bipolarons on square and triangular lattices can be meaning-
fully compared, we have kept energy scales fixed in terms of
W �the noninteracting kinetic energy of a single particle�
rather than t. For the square lattice, W=4t, while for the
triangular lattice, W=6t. Similar considerations should be
made when comparing plots of total energy between lattice
types, which is why we have quoted all energy scales
in these sections in terms of W. Also, to keep the ratio

� /W=1 /4, all properties in this section are computed for
� / t=1.5. Finally, for the same reason, the temperature is also
3/2 higher than that used for computations of the bipolaron

on the square lattice, so 
̄=28 /3.
Figure 6 shows the total energy of bipolarons on the tri-

angular lattice as U, 	, and Rsc are changed. A quick inspec-
tion indicates that there is no clear qualitative difference be-
tween the total energy of bipolarons on square and triangular
lattices. The same is true of the number of phonons associ-
ated with the bipolaron, which is shown in Fig. 7. It is quite
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surprising that the properties are so similar since there are
very different hopping mechanisms on the triangular lattice
compared to the square lattice �such as the possibility for S1
bipolarons to move with a single hop on the triangular lattice
while intersite bipolarons on the square lattice have to tunnel
through a high-energy intermediate state to move�. However,
careful comparison shows that in the strong U limit �where
intersite S1 bipolarons are formed� the bipolaron formed
from near-neighbor interactions has slightly more phonons
on the square lattice than on the triangular lattice. For the
very long-range Fröhlich interaction, there are only tiny dif-
ferences between results for the square and triangular lattices
�there are around 2.5% more phonons associated with

Fröhlich bipolarons on the triangular lattice�. Clearly, the
crossover between S0 and S1 bipolarons occurs at approxi-
mately the same value of U /W. The strong similarities be-
tween the properties of bipolarons on square and triangular
lattices on the adiabatic side of the parameter space is quite
surprising considering that the properties are very different in
the antiadiabatic limit. However, the differences between the
bipolarons become clearer when the inverse mass is exam-
ined.

It has previously been reported that bipolarons on the tri-
angular lattice are small and light.12 Figure 8 shows the in-
verse mass of bipolarons on the triangular lattice. Bipolarons
formed via the Fröhlich interaction are relatively light, as
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gular lattice. Parameters are as in
Fig. 6.
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was observed when the square lattice was considered. The
Holstein bipolaron remains qualitatively different to the bi-
polarons formed with the screened Fröhlich interaction, with
an enormous change in the mass of several orders of magni-
tude over a very small range of U /W as the bipolaron binds.
The most significant �and surprising� differences between the
bipolarons on square and triangular lattices can be seen when
nearest-neighbor interactions are considered and when 	
=0.6 and U is large. For these parameters, the bipolaron on
the square lattice is lighter than its counterpart on the trian-
gular lattice �although this does not mean that it is necessar-
ily small�. We also note that as 	 approaches 1.6, the relative
magnitudes of the masses on square and triangular lattices

reverses and the bipolaron on the triangular lattice becomes
lighter than the bipolaron on the square lattice �the other
parameters are held fixed�. This is the part of the parameter
space where superlight small bipolarons are expected. We
will revisit this point when the size of the bipolaron is com-
puted.

Again, a hybrid S0-S1 bipolaron is likely when the S0 and
S1 configurations become degenerate. As before, this state is
visible as a decrease in the effective mass �increase in in-
verse effective mass� at intermediate U. A comparison of the
inverse masses of bipolarons as interaction range is changed
is shown in Fig. 9. There is only a shallow maximum in the
inverse mass curve for Rsc=� but there are more pronounced

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Fröhlich, Rsc=1

Square

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Fröhlich, Rsc=1

Triangular

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Fröhlich, Rsc=3

Square

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Fröhlich, Rsc=3

Triangular

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Fröhlich

Square

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Fröhlich

Triangular

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Near−neighbor

Square

singlet
triplet

2 X polaron

−7

−6

−5

−4

−3

−2

0 0.5 1 1.5 2

E
/W

λ

Near−neighbor

Triangular

singlet
triplet

2 X polaron

FIG. 12. Total triplet energy of
the Fröhlich bipolaron on the
square lattice �left� and triangular
lattice �right�. For the square lat-

tice, U=40t, 
̄=7, and �̄=2. On
the triangular lattice, U / t=60, �̄

=3, and 
̄=14 /3. 	 and the inter-
action range are varied. For com-
parison, we also show the singlet
energy and the energy of two po-
larons. As the interaction range in-
creases, the minimum electron-
phonon coupling required to bind
both singlet and triplet decreases.
The singlet energy is very similar
on both lattices. However, the
singlet-triplet splitting on the tri-
angular lattice is much larger than
on the square lattice for all inter-
action ranges.
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humps in the curves for smaller values of the screening, cor-
responding to a light bipolaron. The peaks are not as pro-
nounced for the bipolaron on the triangular lattice as they
were when motion was on the square lattice. This is probably
because the S1 bipolaron on the triangular lattice at large 	
and large U is already light and small with a mass that is first
order in t,12 so the presence of the hybrid state does not make
it significantly easier for the bipolaron to move about on the
triangular lattice �whereas on the square lattice, the change
from S1 to the hybrid state changes bipolaron hopping pro-
cesses from second to first order in t leading to a reduction in
mass�.

To finish the examination of the differences between
square and triangular lattices, we examine the inverse bipo-

laron size in Fig. 10. For large 	, the size of the pair is small
and S1 bipolarons are clearly formed in the Fröhlich model
at large U �i.e., the radius is approximately one lattice spac-
ing�. There are differences between the sizes of bipolarons
on triangular and square lattices. Comparison between the
radius of the bipolaron on the two lattices shows that the
bipolaron on the triangular lattice is significantly smaller
than its counterpart on the square lattice at large U. Also, the
bipolaron on the triangular lattice is slightly bigger than the
pair on the square lattice at very small U. The bipolarons
formed on square and triangular lattices have similar size at
intermediate U where the pair has hybrid S0-S1 properties.
Thus we can see that the slightly larger �but still light� mass
of the S1 bipolaron on the triangular lattice is most likely a
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result of the stronger binding into the S1 state �indeed for
large U, the S1 state is very well bound on the triangular
lattice at quite small 	—shown by Rbp

−1�1�. It is this prop-
erty of small and light bipolarons that could lead to a bipo-
laron condensate of S1 bipolarons on a triangular lattice at
reasonably high temperatures. However, we have now iden-
tified an additional bipolaron configuration which is light and
small on both triangular and square lattices, and which is
formed at moderate 	 and U: the extra-light hybrid S0-S1
bipolaron.

V. TRIPLETS

We now direct our attention to triplet properties of the
bipolaron. The possibility of triplet superconductivity has re-

ceived a lot of interest since the discovery of spin triplet
superconductivity in Sr2RuO4.22 Triplet superconductivity
has also been identified in heavy fermion materials that have
a triangular lattice.23 From the theoretical point of view, trip-
let pairs could be of interest for two reasons. First, there is a
wide literature on BCS to BEC crossover24–26 which is of
interest when the parameters governing pairing are interme-
diate. The presence of stable real-space triplet pairs would
add additional limits to this problem, including a crossover
or transition between singlet and triplet pairings. Second, the
energy difference between singlet and triplet states could be
considered as the energy cost of a spin flip, with a direct
interpretation as a spin gap.1 In the next two sections of this
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FIG. 14. Number of phonons
associated with the triplet Fröhlich
bipolaron. Parameters are as
Fig. 12.
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paper, we discuss the possibility and properties of real-space
triplet pairs on square and triangular lattices.

A. Hubbard-Holstein model

We start our examination by considering the on-site
Hubbard-Holstein interaction. To examine if triplet bipo-
larons can exist in the 2D Hubbard-Holstein model, we ex-
amine the model with very large U /W=10 and compare the
energy of two electrons subjected to the Hubbard-Holstein
interaction with that of two unbound polarons �Fig. 11�.
There are several good reasons for doing this. First, as we
have seen in the previous sections, the energy of the singlet
bipolaron increases monotonically with U, so the binding

energy of the singlet bipolaron is minimized, therefore the
singlet triplet splitting is also minimized �since triplet states
cannot have a higher energy than two free polarons without
dissociating�. Second, since triplet states must have equal or
higher energy than singlets, an unbound singlet also implies
that the triplet is also not bound. The triplet properties cannot
depend on U since a node in the triplet pair wave function
means that the Hubbard U has no possible effect on triplet
properties, so it is sufficient to analyze only this large U
limit. We have carefully computed the energies of singlets,
triplets, and two polarons on triangular and square lattices,
and have found no bound triplet states to within the statisti-
cal error.
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B. Hubbard-Fröhlich model

While there are no triplet bipolarons formed in the
Hubbard-Holstein model, the longer range interactions asso-
ciated with the Hubbard-Fröhlich model can lead directly to
intersite pairing, which is likely to lead to triplet states. To
determine the existence of triplet pairs in the model, we com-
pute the singlet and triplet energies, and compare them with
the energy of two polarons, which can be seen in Fig. 12.
The parameters associated with the computations are U

=40t, 
̄=7, and �̄=2 on the square lattice and U / t=60, �̄

=3, and 
̄=14 /3 on the triangular lattice. We use the same
parameters throughout this section. At weak 	, there are nei-
ther singlet nor triplet bound states. On increasing 	, the
singlet and triplet states bind at a similar value of 	 �the
binding can be seen as bifurcations of the curves�. At very
large 	, the energies of the singlet and triplet become degen-
erate. This is a result of the interaction on the polaron hop-
ping, which becomes exponentially small. The separation of
singlets and triplets in the U-V model on the square lattice
scales as t2, whereas on the triangular lattice the large 	
singlet-triplet splitting scales like t. This can be seen in the
adiabatic limit as a much larger singlet triplet splitting in the
case of the triangular lattice. We note that there are strictly
two degenerate triplet states measured here, representing two
p pairings.

The inverse mass of the triplet Fröhlich bipolaron is
shown in Fig. 13. At this value of U /W and large electron-
phonon coupling, the triplet bipolaron is heavier than the
singlet bipolaron, and at weak coupling the triplet is lighter.
As U is changed, the triplet properties remain constant,
whereas the singlet ones change, notably with an increase in
the singlet mass on decrease in U. At very small U, we
would expect that the singlet is always heavier. While the
strongly coupled singlet bipolaron is clearly lighter on the
triangular lattice, which is due to the qualitative effects of
lattice type, we do not see any qualitative difference between
the mass of the triplets on square and triangular lattices
which are very similar.

Figure 14 shows the number of phonons associated with
the triplet Fröhlich bipolaron. At strong coupling on the tri-
angular lattice, there is a clear difference between the num-

ber of phonons associated with singlet and triplet. In con-
trast, on the square lattice the number of phonons associated
with the two types of bipolaron converges on a single value
at large 	. We believe that this is related to the second-order
hopping on square lattices at strong coupling and first-order
hopping on triangular lattices. We also note that increasing
the electron-phonon interaction range reduces this difference,
presumably since the bipolaron has more configurational
freedom when Rsc is increased, thus allowing similar hop-
ping processes.

Finally, we compute the radius of the triplet Fröhlich bi-
polaron, which is shown in Fig. 15. There are only small
quantitative changes between the radii of triplet bipolarons
on different lattices. We note a small finite-size effect at
weak coupling, which corresponds to a finite inverse radius
where the bipolaron is not bound. On increasing 	, the sin-
glet bipolaron is the first to bind strongly, with the triplet
radius decreasing slightly but with the triplet becoming small
only for larger 	. Increased interaction range decreases the
electron-phonon coupling required to bind both types of bi-
polaron. The strongly bound triplet is slightly larger than the
singlet.

VI. DISPERSION

A. Hubbard-Holstein model

To complete our survey of bipolarons in 2D, we consider
dispersions of the Hubbard-Holstein and Hubbard-Fröhlich
bipolarons. The electron-phonon interaction has the potential
to lead to unusual effects. For example, polaron dispersions
in the adiabatic regime of the Holstein model on square and
triangular lattices are flattened at the edge of the Brillouin
zone.27,28 It is not known if the dispersion remains flattened
once bipolarons form, and also little is known about the dis-
persions of triplet bipolarons. Thus, it is of interest to deter-
mine how the flat dispersion evolves as a bipolaron is bound
from two polarons.

In Fig. 16 we show singlet dispersions of the Hubbard-
Holstein bipolaron on the square lattice when 	=1.45 and
�̄=1. Computation of the dispersion is carried out using the
same method as in Ref. 6. At large U, the bipolaron is un-
bound and the dispersion represents two polarons.29 The dis-
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persions relating to U / t=12, U / t=11.6, and U / t=11.2 are
indistinguishable to the eye �left panel�. As the repulsion is
decreased, there is a decrease in bandwidth of several orders
of magnitude at the U corresponding to the binding of the
bipolaron. In the right panel, we also show dispersions nor-
malized by �M−�0 ��M is the energy of the bipolaron at the M
point� so that the forms of the dispersion function can be
compared to the noninteracting tight-binding dispersion. At
large U, the form of the dispersion of the two polarons �and
the weakly bound bipolaron� is quite distorted away from the
form of the tight-binding dispersion. As U decreases further,
the electrons become tightly bound into an on-site bipolaron.
Then the form of the dispersion tends toward that of the
tight-binding spectrum. We believe this to be the effect of the
strongly bound bipolaron acting as a single particle, with a
new hopping integral that relates to the overlap of the wave
function of the pair between sites.

In Fig. 17 we show the variation in the singlet dispersions
of the Hubbard-Holstein bipolaron on the triangular lattice
when 	=1.45, �̄=1.5, and U is varied. Again, the functional
form of the spectrum tends toward the tight-binding disper-

sion as pairs become strongly bound, although it becomes
increasingly difficult to collect data since the fractional vari-
ance on the dispersion increases as 	 increases. Again, we
suggest that the similarity in functional forms is due to the
tightly bound bipolaron acting as a single particle with a
single �albeit small� intersite hopping parameter. For the Hol-
stein bipolaron, the pair wave function is small and the lat-
tice distortion is highly localized.

B. Hubbard-Fröhlich model

We also examine the dispersions of the Hubbard-Fröhlich
model. In Fig. 18, we show the dispersion for the square
lattice when the Fröhlich interaction with Rsc=2 is consid-
ered. The panels show the effects of changing U. At large U,
the bipolaron is bound into an intersite �S1� configuration.
There are two main features that should be emphasized. The
first is remarkable. As the Coulomb repulsion decreases, the
bandwidth increases significantly, i.e., although the bipo-
laron becomes more strongly bound, it becomes lighter. This
is the same effect as seen in Sec. III, where the mass was
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shown to decrease at intermediate U as a new type of hybrid
S0-S1 crab bipolaron forms. At small U, the degeneracy of
the S0 and S1 bipolarons is broken and the bandwidth de-
creases with U.

The second feature in Fig. 18 is that the shape of the
bipolaron dispersion changes dramatically as it is bound on-
site. For large U, the dispersion is flattened, whereas for the
strongly bound on-site pair �U / t=5� the dispersion has the
characteristic tight-binding shape �albeit strongly renormal-
ized by interactions�. We consider this effect to relate to the
change between hopping mechanisms. For a weakly bound
bipolaron, the wave function is large and single polaronlike
hops dominate the motion of the particle, whereas for the
strongly bound bipolaron, the pair wave function is smaller
than a single lattice site and a new hopping integral becomes
relevant, which is relating to the tunneling of the whole bi-
polaron between sites. The dispersions of triplet states on the
square lattice are also shown in the panel relating to U / t
=40. The triplet state is higher in energy and has a narrower
bandwidth. Singlet and triplet dispersions do not cross.

We also examine the dispersions of the Coulomb-Fröhlich
bipolaron on a triangular lattice, which are shown in Fig. 19.
The first significant difference between bipolarons on square
and triangular lattices is the existence of superlight bipo-
larons at large U→�. These contribute to a factor of �4
difference between the bandwidths of the bipolaron on
square and triangular lattices. Again, as U decreases there is
a remarkable increase in the bandwidth. This effect is not as
dramatic as in the case of the square lattice, presumably be-
cause the bipolaron already moves with a crablike motion at
large U. However the degeneracy between S0 and S1 bipo-
larons accounts for an additional �20% increase in the band-
width, making the bipolarons extra light. This shows how
bipolarons can be light over an extremely large regime of the
parameter space on triangular lattices.

To highlight the effect of the formation of the hybrid
S0-S1 bipolaron on the dispersion, Fig. 20 shows a compari-

son of the variation in the bandwidth as U is changed. The
bandwidths of bipolarons on both square and triangular lat-
tices are shown, although it should be noted that the scales
are different. There is an increase in bandwidth at U /W�3.
The widening of the bandwidth is more significant for the
square lattice but is also visible for the triangular lattice. The
broadening of the bandwidth on the square lattice at interme-
diate to large U is important, since it shows that light bipo-
larons are not confined to lattices constructed from triangular
plaquettes, but can also exist on simple square, linear, and
presumably cubic lattices.

As noted in Sec. I, we can also consider the properties of
bipolarons formed from a simplified nearest-neighbor inter-
action as a means to compare with analytical results. Figure
21 shows the variation in the singlet and triplet dispersions in
the near-neighbor model as � is changed. Bipolarons are
considered on both square and triangular lattices with a large
electron-phonon coupling of 	=8. To make comparisons
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FIG. 19. Singlet dispersions of
the bipolaron formed in the
screened Hubbard-Fröhlich model
on the triangular lattice. Rsc=2,

	=1.45, �̄=1.5, 
̄=28 /3, and U
is varied. Error bars represent one
standard deviation. As U is de-
creased, the bandwidth initially
increases as the S0-S1 hybrid bi-
polaron is approached from the S1
bipolaron �until around U / t=15�.
For small U, the S0 bipolaron is
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creases significantly. For reference
the tight-binding dispersion nor-
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also plotted. The triplet dispersion
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with the UV model, we choose a large phonon frequency �
=120t on the triangular lattice �and �=80t on the square
lattice�. A large Coulomb repulsion of U=120t�U=80t� stops
on-site pairing, which leads to a U-V model with Ũ=24t�Ũ
=16t� and Ṽ=48t�Ṽ=32t�. We also compute the dispersions
of bipolarons on the triangular lattice when �̄=30 and �̄
=6 ��̄=20 and �̄=4 on the square lattice�.

The dispersion of the near-neighbor bipolaron on the tri-
angular lattice at large phonon frequency yields an unusual
result. The singlet and triplet bands cross. We note again that
the QMC algorithm picks out only the lowest energies asso-
ciated with singlet and triplet states. In the plot, the s band is
visible, along with the lowest p band. A crossing is very
unexpected since in all situations that we have previously
studied, the triplet band has always sat above the singlet one.
This indicates that there will be a transition from singlet to
triplet states if sufficient momentum can be imparted to the
bipolarons. The crossing remains down to lower phonon fre-
quencies ���5W but is not visible in the adiabatic regime.

In Appendix A, we summarize the analytical approach to
solving the UV model on a triangular lattice when pairs have
finite momentum and the full dispersion can be seen in Fig.
22. The energy-level crossing is clearly visible, and by com-
parison it is clear that a single s band and a single p band are
visible in Fig. 21. Note that there are a total of six possible

bands associated with the bipolaron, although it is unlikely
that the higher energy bands would be excited in any normal
transport process.

The band crossing cannot be seen for bipolarons on the
square lattice, rather the singlet and triplet pairs become de-
generate at the zone edge as the phonon frequency increases.
This feature is also visible in the dispersion of bipolarons on
the chain6 and is probably a generic feature of bipolarons on
lattices with cubic symmetry.

VII. SUMMARY

In this paper, we computed the properties of bipolarons on
two-dimensional lattices using a continuous-time quantum
Monte Carlo algorithm. Properties of the bipolaron including
the total energy, inverse mass, bipolaron radius, and number
of phonons associated with the bipolaron demonstrated the
qualitative difference between models of electron-phonon in-
teraction with long-range interaction �screened Fröhlich� and
those with purely local �Holstein� interaction, with only
small long-range tails needed to completely change the prop-
erties of the bipolaron. A major result of our survey of the
parameter space is the existence of extra-light hybrid bipo-
larons consisting of an on-site and an off-site component
when on-site and intersite bipolaron configurations are de-
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with Ū=24t and V̄=48t. Also
shown for the triangular lattice are
�̄=30 �panel e� and �̄=6 �panel
d� and for the square lattice, �̄
=20 �panel b� and �̄=4 �panel a�.
On the square lattice, 
̄=3.5 and
U=80t and on the triangular lat-

tice, 
̄=7 /3 and U=120t.

J. P. HAGUE AND P. E. KORNILOVITCH PHYSICAL REVIEW B 82, 094301 �2010�

094301-18



generate, similar to the previously reported superlight bipo-
larons, but slightly lighter on the triangular lattice, and sig-
nificantly lighter than the strong coupling intersite bipolarons
on the square lattice. We also compute triplet properties of
the bipolarons. A major surprise is that triplet pairs with large
momentum �close to the K point� are more stable than singlet
states on the triangular lattice.

The potential for the existence of local triplet pairs that
are preferentially bound could open new avenues in the
theory of superconductivity. At low momenta, triplet pairs
are necessarily higher in energy than their singlet counter-
parts since an exact theorem requires the ground-state wave
function of a pair to have no nodes. No such theorem exists
for states with high pair momentum, however the existence
of stable triplet states is unexpected. Thus, in addition to the
potential for BCS-BEC crossover as the attractive potential
is tuned, there is an additional possibility of triplet BCS to
triplet BEC crossover, or even a transition between singlet
and triplet pairings. We believe that such a possibility should
be investigated further.

Our other finding of light hybrid bipolarons on the square
lattice at intermediate coupling and Coulomb repulsion is
also significant. While the effect only exists over a very nar-
row range of coupling constants, it shows that exotic lattice
types are not necessary for small light pairs that could have
potential to form a Bose condensate with a moderately high
transition temperature. This could be of interest to quasi-2D
materials that have been suggested to be bipolaron supercon-
ductors such as layered bismuthate superconductors �and
possibly other superconductors�. As in the case of the trian-
gular lattice, light pairs are only a prerequisite for a high-

temperature BEC, as other factors such as an absence of
clustering in the many particle limit need to be confirmed as
part of the scaling needed to understand systems which con-
tain many electrons. Work to discuss this clustering will form
the basis of a future publication.
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APPENDIX A: UV MODEL ON THE TRIANGULAR
LATTICE

The quantum-mechanical problem of two interacting par-
ticles on a lattice can be solved exactly as long as the radius
of the interaction is finite. Of special interest here is the
spectrum of bound pairs that form when at least part of the
potential is attractive. The general solution of the bound-state
problem results in a spectral equation30–32 in the form of a
determinant with a size equal to the number of lattice sites
within the interaction range. For the nonretarded UV model
with on-site Hubbard repulsion U and nearest-neighbor at-
traction −V, the determinant is 3�3 for the one-dimensional
chain, 5�5 for the square lattice, 7�7 for the triangular
lattice, and so on. The subsequent analysis can be simplified
by considering the symmetric and antisymmetric states �that
is, the singlets and triplets� separately. This effectively halves
the number of interaction sites and halves the size of the
determinants as a result. For the UV model on the triangular
lattice, the size of the singlet determinant reduces to 4 �sym-
metric combinations of the nearest neighbors plus the central
site�, and that of the triplet determinant to 3 �antisymmetric
combinations of the nearest neighbors�.

Omitting the straightforward but lengthy derivation, the
spectral equation for the singlet bound pair of the lattice
momentum K is

�
US00 − 1 − VS01 − VS02 − VS03

− VS10 − VS11 − 1 − VS12 − VS13

− VS20 − VS21 − VS22 − 1 − VS23

− VS30 − VS31 − VS32 − VS33 − 1
� = 0,

�A1�

where
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FIG. 22. The spectrum of bound pair in the UV model on the
triangular lattice at zero temperature. U=24t and V=48t, which
corresponds to 	=8, U=20W, and �→�. Notice the crossing of
the lowest singlet and triplet states near the edge of the Brillouin
zone at the M point.
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FIG. 23. Comparison with the

exact results in Ref. 19 for 1D bi-
polaron models. The points at T
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case of near-neighbor interactions,
CTQMC attains agreement to bet-
ter than 0.1% and for the Holstein
model, agreement better than
0.3% can be gained during a rea-
sonable run time. Note the tem-
perature corrections for higher T.
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Sj0�K� =
1

N
�

q

eiqnj

E + ��K,q�
, �A2�

Sjk�K� =
2

N
�

q

eiqnj cos�qnk�
E + ��K,q�

, �A3�

��K,q� = 4t cos
Kx

2
cos qx + 8t cos

Kx

4
cos

�3Ky

4
cos

qx

2
cos

�3qy

2

+ 8t sin
Kx

4
sin

�3Ky

4
sin

qx

2
sin

�3qy

2
. �A4�

Here the vectors n j,k denote the nearest-neighbor sites of the
triangular lattice: n0= �0,0�; n1= �1,0�; n2= � 1

2 ,
�3
2 �; and n3

= �− 1
2 ,

�3
2 �.

Equation �A1� can be solved numerically with respect to
the pair energy E for the given pair momentum K. For a
positive on-site repulsion U and a large enough intersite at-
traction V, the equation has three roots that we denote s, d1,
and d2 states. The evolution of the energies as a function of
K is shown in Fig. 22 At the high-symmetry points of the
Brillouin zone, the system of Eq. �A1� can be further diago-
nalized into smaller blocks by a proper linear transformation.
Thus, at the � point K= �0,0�, the spectrum splits into the
standalone ground state s and a degenerate doublet �d1 ,d2�.
In the corner of the Brillouin zone, the states s and d1 be-
come degenerate, as can be seen from Fig. 22.

The triplet bound states can be treated similarly. The exact
spectrum equation is a 3�3 determinant,

�− VT11 − 1 − VT12 − VT13

− VT21 − VT22 − 1 − VT23

− VT31 − VT32 − VT33 − 1
� = 0, �A5�

Tjk�K� =
�− 2i�

N
�

q

eiqnj sin�qnk�
E + ��K,q�

�A6�

with the same meaning of n j,k and �. The equation does not
depend on the on-site repulsion at all, as expected. At the �

point, the spectrum splits into a low-energy doublet �p1 , p2�
and a standalone high-energy f state, �see Fig. 22�. At the K
point, p2 and f are degenerate.

Two comments are in order. �i� For strongly coupled pairs,
the classification of the different orbital states is basically the
one of a single particle on a six-site tight-binding ring. �ii�
Notice the general property of level crossing between the
lowest singlet and triplet states. While the singlet is always
the ground state at small momenta, the triplet becomes the
lowest state at large momenta. The same property has been
observed for the bipolaron, as discussed in the main text of
the paper.

APPENDIX B: CODE VALIDATION

We briefly mention additional details providing evidence
of the validity of our code. We have compared our code with
exactly known results19 from 1D models: �1� at 	=0.5, � / t
=U / t=1, and a near-neighbor interaction, Ref. 19 states the
total bipolaron energy as Etot=−5.822621 �accurate to seven
significant figures� and we compute −5.820�0.0033 at 

=56 consistent with those values to an accuracy of approxi-
mately 0.1%. �2� At 	=0.5, � / t=1, and U / t=0 for Holstein
interaction, Ref. 19 quotes Etot=−5.4246528 and we find
Etot=−5.42�0.014 �Fig. 23�.

In addition, we compare with results for polarons com-
puted using diagrammatic quantum Monte Carlo20 to simu-
late the effect of a near-neighbor electron-phonon interaction
with fn,m��ai

�n,m+ai/2
—here our code has been used with a

separating potential so that our two-particle code can be used
to make a comparison with polaron results from DQMC. The
results from this comparison can be seen in Fig. 24 for the
1D chain and 2D triangular lattice �by simulating the trian-
gular lattice in this way, triple kink insertions can be
checked�. The comparison shows exact agreement once tem-
perature corrections are taken into account �our CTQMC
code runs as finite temperature while DQMC is a zero-
temperature technique�. The use of a near-neighbor interac-
tion to make the comparison is useful to test the parts of our
code that deal with long-range interaction, which are the
same for the lattice Fröhlich interaction.
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